Chemistry Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
PS1.A: Structure and Properties of Matter (NYSED) Different kinds of matter exist and many of them can be either solid or liquid. Matter can be described, categorized, and sorted by its observable properties. (P-PS1-1) 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their pbservable properties. 2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* 2-PS1-3. Make pbservations to construct an evidence-based account of how an object made of a small set of	Matter and Measurement Unit SWBAT: Describe Matter, including the difference between substances and mixtures Measure Matter Describe the particles of Matter Describe changes in Matter Understand the difference between physical and chemical changes Matter and Change in	K-PS1-1. SWBAT Plan and conduct an nvestigation to test the claim that different kinds of matter exist as either solid or liquid, depending on temperature P-PS1-1. SWBAT Ask questions and use observations to test the claim that different kinds of matter exist as either solid or liquid. SWBAT Planning and carrying out investigations to answer questions or test solutions to problems SWBAT Analyze data in PK-2 builds on prior experiences and orogresses to collecting, ecording, and sharing observations. -Record information (observations, thoughts, and ideas). (P-PS1-1) -Analyze data from tests of an object or tool to	Schoology 11 th Grade Text – Prentice Hall Chemistry, including guided reading Regents Reference Tables Calculators Lab Supplies	Labs: •Measurement and accuracy •Density lab •Bunsen Burner lab •Bubble lab •Physical and chemical change lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	First three weeks in Septemb er

pieces can be Disassembled and made	Matter	determine if it works as ntended. (P-PS2-1)		
nto a new object.	Inderstand the			
		PK.MD.1 SWBAT Identify		
2-PS1-4. Construct an	concept of scientific	measurable attributes of		
argument with evidence	hotation and how to	pbjects, such as length,		
hat some changes	convert between	and weight. Describe them		
aused by heating or	decimals and	using correct vocabulary		
ooling can be reversed		(P-PS2-1)		
ind some cannot.				
PS1 A: Structure and		MP.4 SWBAT Model with		
Properties of Matter	Recall and use basic	mathematics. (P-PS2-1)		
Different kinds of	algebra skills			
natter exist and many of		DL.N.3 SWDAT ASK and		
hem can be either solid	Understand basic	to seek help get		
or liquid, depending on	density principles and	nformation or clarify		
emperature. Matter can	palculate the density	something that is not		
e described and		understood. (K-PS1-1)		
lassified by its	pf both regular and	, , , , , , , , , , , , , , , , , , , ,		
bservable properties.	rregular shaped	5-PS1-4. SWBAT Conduct		
2-PS1-1)	pbjects.	an investigation to		
Different properties are	-	determine whether the		
suited to different	Determine how many	mixing of two or more		
ourposes. (2-	significant figures are	substances results in new		
-31-2),(2-P31-3) A groat variaty of		substances.		
A great variety of	n values as well as			
rom a small set of	calculate problems	p.MD.A.1 Convert among		
ieces (2-PS1-3)	using significant	pillerent-sized standard		
10000. (2 1 0 1 0)	figures	a given measurement		
he total amount of		system (e.g. convert 5 cm		
natter is conserved	Ise dimensional	to 0.05 m), and use these		
vhen it	brolygig in order to	conversions in solving		
Changes form, even in		multi-step, real-world		
ansitions in which it	convert units and	problems. (5-PS1-2)		
eems to vanish.	solve problems			
5-PS1-2)		5.MD.C.3 Recognize		
	Understand	volume as an attribute of		
	temperature and	solid figures and		
	energy changes	understand concepts of		
	chergy changes	volume measurement.		
		(3-131-1)		

	Use percent error in order to determine accuracy within measurement	5.MD.C.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and mprovised units. (5-PS1-1)			
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
NYS 3.1a The modern model of the atom has evolved over a long period of time through the work of many scientists.	Atomic Structure SWBAT: Summarize Dalton's atomic theory	SWBAT relate experimental evidence (given in the introduction of Key Idea 3) to models of the atom (3.1ii)	Same as above	Labs: • Spectra Lab • Candium/pennium • Flame test • Obscertainer	late Septemb er to early October
 3.1b Each atom has a nucleus, with an overall positive charge, surrounded by negatively charged electrons. 3.1c Subatomic particles contained in the nucleus include protons and neutrons. 3.1d The proton is positively charged, and the neutron has no abarga. The olectron is positively charged and the neutron has no abarga. The olectron is positively charged. 	Recognize different models of the atom, especially Rutherford's gold foil experiment, the Bohr model and the modern model of the atom Distinguish among protons, electrons, and neutrons in terms of relative mass and charge.	SWBAT use models to describe the structure of an atom (3.1i) SWBAT determine the number of protons or electrons in an atom or ion when given one of these values (3.1iii) SWBAT calculate the mass of an atom, the number of neutrons or the number of protons, given the other two values (3.1iv)		summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	
charge. The electron is negatively charged.	Describe the	SWBAT draw a Lewis electron-dot structure of			

3.1e Protons and	structure of an	an atom (3.1viii)		
electrons have equal	atom including the			
but opposite charges.	location of the	SWBAT distinguish		
The number of protons		between valence and		
is equal to the number	protons, electrons,	non-valence electrons,		
or electrons in an atom.	and neutrons with			
	respect to the	$e_{a} = 2 - 8 - 2 (3 1 vii)$		
3.1f The mass of each	nucleus	5.9., 2 0 2 (0.11.)		
proton and each		SWBAT given an atomic		
neutron is	Explain how the	mass, determine the most		
approximately equal to	stomic number	abundant isotope		
one atomic mass unit.		(3.1xi)		
An electron is much	dentines an	SWRAT calculate the		
proton or neutron	element and be able	atomic mass of an		
	to use the atomic	element, given the masses		
3.1h In the	humber and mass	and ratios of naturally		
wave-mechanical	humber of an	pccurring isotopes (3.1xii)		
model (electron cloud),	element to find the			
the electrons are in	humbers of protons	K-PS1-1. SWBAT Plan		
defined as regions of	neutrons and	investigation to test the		
most probable electron	blootrono	claim that different kinds of		
location (ground state).		matter exist as either solid		
	L	pr liquid,		
3.11 The outermost	Explain how	depending on temperature		
electrons in an atom	sotopes differ and			
are called the valence	why the atomic	P-PS1-1. SWBAT ASK		
the number of valence	masses of elements	bservations to test the		
electrons affects the	are not whole	claim that different kinds of		
chemical properties of	humbers	matter exist as either solid		
an element.		pr liquid.		
3.1m Atoms of an		SWBAI Planning and		
the same number of		carrying out investigations		
protons but a different	average atomic	test solutions to problems		
number of neutrons are	mass of an element			
called isotopes of that	from isotone data	SWBAT Analyze data in		
element.		PK–2 builds on prior		
		experiences and		

r				
 3.1n The average atomic mass of an element is the weighted average of the masses of its naturally occurring isotopes. NGSS 2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. 4-PS3-2. Make observations to provide evidence that energy is conserved as it is transferred and/or converted from one form to another PS3.D: Energy in Chemical Processes and Everyday Life The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4) 	Write electron configurations of elements in both ground and excited state Use the periodic table to infer the number of valence electrons in an atom and draw its electron dot structure. Understand both ground and excited state and how that relates to a bright ine spectrum	progresses to collecting, recording, and sharing observations. -Record information (observations, thoughts, and ideas). (P-PS1-1) -Analyze data from tests of an object or tool to determine if it works as ntended. (P-PS2-1)		

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.1y The placement or location of an element on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order of increasing atomic number. 3.1g The number of protons in an atom (atomic number) identifies the element. The sum of the protons and neutrons in an atom (mass number) identifies an isotope. Common notations that represent isotopes include: 14C, 14C, carbon-14, C-14. 3.1v Elements can be classified by their properties, and located on the Periodic Table, as 	Periodic Table Explain why you can infer the properties of an element based on those of other elements in the periodic table. Interpret group trends in atomic radii, ionic radii, ionization energies, and electronegativities. Use electron configurations to classify elements as noble gases, representative elements, transition metals, or inner transition metals. Define physical property and list several common physical properties of substances.	SWBAT explain the placement of an unknown element in the Periodic Table based on its properties (3.1xvi) SWBAT interpret and write isotopic notation (3.1x) SWBAT classify elements as metals, nonmetals, metalloids, or noble gases by their properties (3.1xiii) SWBAT describe the states of the elements at STP (3.1xviii) SWBAT determine the group of an element, given the chemical formula of a compound, e.g., XCl or XCl2 (3.1xv) SWBAT compare and contrast properties of elements within a group or a period for Groups 1, 2, 13-18 on the Periodic	Same as above Video: Hunting the Elements	Labs: • Periodic Trends summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	Last week of October

metals, nonmetals,	physical and chemical	Table (3.1xiv)		
metalloids (B, Si, Ge, As, Sb, Te) , and noble	changes in matter.			
gases.	Use the periodic table to infer the number of			
3.1w Elements can be differentiated by their	valence electrons in an			
physical properties.	atom and draw its electron dot structure.			
substances, such as	Interpret group trends			
density, conductivity, malleability, solubility,	in atomic radii, ionic			
and hardness, differ among elements.	energies, and electronegativities.			
3.1x Elements can be differentiated by	Interpret period trends			
chemical properties.	in atomic radii ionic			
describe how an element	energies, and			
chemical reaction	electronegativities			
3.1z For Groups 1, 2,				
and 13-18 on the Periodic Table, elements	Vocab.: atomic radius,			
within the same group have the same number	electronegativity			
of valence electrons (helium is an exception)				
and therefore similar chemical properties.				
3 laa The succession of				
elements within the				
demonstrates				
differences in atomic				
radius, ionic radius,				

electronegativity, first ionization energy, metallic/nonmetallic properties.			
3.1bb The succession of elements across the same period demonstrates characteristic trends: differences in atomic radius, ionic radius, electronegativity, first ionization energy, metallic/nonmetallic properties.			
5.2f Some elements exist as two or more forms in the same phase. These forms differ in their molecular or crystal structure, and hence in their properties.			
COMMON CORE 6. Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information			

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.1cc A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound can be broken down by chemical means. A chemical compound can be represented by a specific chemical formula and assigned a name based on the IUPAC system. 3.1ee Types of chemical formulas include: empirical, molecular, and structural. 3.3d The empirical formula of a compound is the simplest whole-number ratio of atoms of the elements in a compound. It may be different from the 	Moles/ Stoichiometry Apply the rules for naming and writing formulas for binary ionic compounds. Apply the rules for naming and writing formulas for binary molecular compounds. Derive the empirical formula and the molecular formula of a compound from experimental data. Apply the law of conservation of mass. Write equations describing chemical reactions using appropriate symbols.	SWBAT determine the molecular formula, given the empirical formula and molecular mass (3.3vii) SWBAT determine the empirical formula from a molecular formula (3.3v) SWBAT balance equations, given the formulas for reactants and products (3.3i) SWBAT interpret balanced chemical equations in terms of conservation of matter and energy (3.3ii) SWBAT create and use models of particles to demonstrate balanced equations (3.3iii) SWBAT calculate simple mole-mole stoichiometry problems, given a	Same as above	Labs: • Writing Names and Formulas • Balancing Equations • Empirical Formulas • Molecular Models • Identification of Anions and Cations summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	Novemb er

molecular formula, which is the actual ratio of atoms in a molecule of that compound. 3.3a In all chemical reactions there is a conservation of mass, energy, and charge 3.3c A balanced chemical equation represents conservation of atoms. The	Write balanced chemical equations when given the names or formulas of the reactants and products in a chemical reaction. Construct mole ratios from balanced chemical equations and apply these ratios in mole-mole stoichiometric	balanced equation (3.3iv) SWBAT The molar mass (gram formula mass) of a substance equals one mole of that substance. SWBAT calculate the formula mass and the gram-formula mass (3.3viii) SWBAT determine the number of moles of a		
coefficients in a balanced chemical equation can be used to determine mole ratios in the reaction.	calculations. Calculate stoichiometric quantities from balanced chemical equations using units	number of moles of a substance, given its mass (3.3ix) SWBAT determine the mass of a given number of moles of a substance (3.3yi)		
of a substance is the sum of the atomic masses of its atoms. 3.3f The percent composition by mass of each element in a	of moles, mass, representative particles, and volumes of gases at STP Calculate the mass of a mole of any substance.	SWBAT identify types of chemical reactions (3.2ii)		
compound can be calculated mathematically. 3.2b Types of chemical reactions include	Use the molar mass to convert between mass and moles of a substance.			
synthesis, decomposition, single replacement, and double replacement.	Calculate the percent composition of a substance from its chemical formula or			

	experimental data. Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP. Identify a reaction as combination, decomposition, single-replacement, double-replacement, or combustion				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
NYS 3.1dd Compounds can be differentiated by their chemical and physical properties. 5.2g Two major categories of compounds are ionic and molecular (covalent) compounds. 5.2a Chemical bonds are formed when valence	Chemical Bonding List the characteristics of an ionic bond. Use the theory of metallic bonds to explain the physical properties of metals. Use electron dot structures to show the formation of single,	SWBAT determine the noble gas configuration an atom will achieve when bonding (5.2iv) SWBAT demonstrate bonding concepts, using Lewis dot structures representing valence electrons: transferred (ionic bonding); shared (covalent bonding); in a stable octet (5.2i) SWBAT distinguish	Same as above	Labs: • Chemical Bonding Lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	Decemb er

electrons are: transferred from one atom to another (ionic); shared between atoms (covalent); mobile within a metal (metallic); distinguish among ionic, molecular, and metallic substances, given their properties (3.1xix)	double, and triple covalent bonds. Explain the difference between unsaturated and saturated hydrocarbons. Use VSEPR theory to predict the shapes of	between nonpolar covalent bonds (two of the same nonmetals) and polar covalent bonds (5.2v)		
5.2e In a multiple covalent bond, more than one pair of electrons are shared between two atoms. Unsaturated organic compounds contain at least one double or triple bond.	simple covalently bonded molecules Use the periodic table to infer the number of valence electrons in an atom and draw its electron dot structure. Describe the formation of cations from metals			
5.21 Molecular polarity can be determined by the shape and distribution of the charge. Symmetrical (nonpolar) molecules include CO ₂ , CH ₄ , and diatomic elements. Asymmetrical (polar) molecules include HCl, NH ₃ , H ₂ O.	and of anions from nonmetals. Interpret period trends in atomic radii ionic radii, ionization energies, and electronegativities.			
5.2c When an atom gains one or more electrons, it becomes a negative ion and its radius increases. When an atom loses one or				

more electrons, it becomes a positive ion and its radius decreases.			
5.2i When a bond is broken, energy is absorbed. When a bond is formed, energy is released.			
5.2b Atoms attain a stable valence electron configuration by bonding with other			
atoms. Noble gases have stable valence electron configurations and tend not to bond.5.2n			
Physical properties of substances can be explained in terms of chemical bonds and			
intermolecular forces. These properties include conductivity, malleability, solubility			
hardness, melting point, and boiling point.			
diagrams (Lewis structures) can represent the valence electron arrangement in			
elements, compounds, and ions.			

5.2j Electronegativity indicates how strongly an atom of an element attracts electrons in a chemical bond. Electronegativity values are assigned according to arbitrary scales.					
electronegativity difference between two bonded atoms is used to assess the degree of polarity in the bond.					
5.2h Metals tend to react with nonmetals to form ionic compounds. Nonmetals tend to react with other nonmetals to form molecular (covalent) compounds. Ionic compounds containing polyatomic ions have both ionic and covalent bonding.					
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/

					Weeks/D ays)
 NYS 3.1q Matter is classified as a pure substance or as a mixture of substances. 3.1kk The three phases of matter (solids, liquids, and gases) have different properties. 3.1r A pure substance (element or compound) has a constant composition and constant properties throughout a given sample, and from sample to sample. 3.1u Elements are substances that are composed of atoms that have the same atomic number. Elements cannot be broken down by chemical change. 3.4a The concept of an ideal gas is a model to explain behavior of gases. A real gas is most like an ideal gas is at low pressure and high 	 Physical Behavior of Matter (gas laws and thermochemistry) Categorize a sample of matter as a substance or a mixture. Differentiate among the three states of matter Explain the difference between an element and a compound. Describe the properties of gas particles. Explain how the kinetic energy of gas particles relates to Kelvin temperature. Explain how the amount of gas and 	SWBAT use a simple particle model to differentiate among properties of a solid, a liquid, and a gas (3.1xxii) SWBAT use particle models /diagrams to differentiate among elements, compounds, and mixtures (3.1xxxvi) SWBAT explain the gas laws in terms of KMT (3.4i) SWBAT convert temperatures in Celsiusdegrees (oC) to kelvins (K), and kelvins to Celsius degrees (3.4iii) SWBAT calculate the heat involved in a phase or temperature change for a given sample of matter (4.2iv) SWBAT explain phase change in terms of the changes in energy and intermolecular distances (4.2ii)	Same as above	Labs: • Changes of Physical State • Specific Heat of Metal • Heat of Fusion of Ice • Surface Tension of Water • CO ₂ in Soda • Charles Law Summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	January and February

temperature.	the volume of the container affect gas	SWBAT distinguish between endothermic and		
3.4b Kinetic molecular theory (KMT) for an	pressure.	exothermic reactions, using energy terms in a reaction equation DH		
particles:	Infer the effect of temperature changes	potential energy diagrams or experimental data (4.1i)		
_ are in random, constant, straight-line motion	on the pressure exerted by a contained gas.	SWBAT describe Hydrogen bonding as an example of a strong		
_ are separated by great distances relative to	State Boyle's law,	intermolecular force, explain vapor pressure,		
their size; the volume of	Charles's law,	evaporation rate, and phase changes in terms of		
considered negligible	and combined gas	intermolecular forces (5.2iii)		
_have no attractive forces between them	Apply the gas laws	SWBAT use collision		
_have collisions that	to problems	various factors, such as		
may result in a transfer	involving the	and concentration,		
particles, but the total energy of the system remains constant.	and pressure of a contained gas.	influence the rate of reaction (3.4 vi)		
	Calculate the amount	SWBAT identify		
states that a reaction is	of a gas at any	equilibria as solution		
most likely to occur if reactant particles collide	specified conditions	equilibrium and phase equilibrium, including the		
with the proper energy and orientation.	of pressure, volume, and temperature.	concept that a saturated solution is at equilibrium (3.4 vii)		
3.4c Kinetic molecular theory describes the relationships of	Distinguish between ideal and real gases.	SWBAT describe the process and use of		
pressure, volume, temperature, velocity, and frequency and force	State Avogadro's hypothesis, Dalton's	filtration, distillation, and chromatography in the separation of a mixture		

of collisions among gas	law, and Graham's	(3.1xxiv)		
linoloculo	law.	SWBAT interpret and		
3.4e Equal volumes of gases at the same temperature and	Calculate moles, masses, and volumes	construct solubility curves (3.1xxv)		
pressure contain an	of gases at STP	SWBAT use solubility		
equal number of		curves to distinguish		
particles.	Calculate partial	among saturated, supersaturated and		
4.2c The concepts of kinetic and potential	of effusion.	unsaturated solutions (3.1xxviii)		
energy can be used to explain physical	Use the international	SWBAT apply the adage		
fusion (melting):	system of units	"like dissolves like" to real-world situations		
solidification (freezing);	Convert between	(3.1xxvi)		
vaporization (boiling, evaporation), condensation,	Celsius and Kelvin temperature scales	SWBAT describe the preparation of a solution,		
sublimation, and deposition	Changes of state	given the molarity		
acposition	Interpret the phase	(5.1777)		
3.2a A physical change	diagram of water at	SWBAT interpret solution		
rearrangement of existing particles in a	any given temperature and	(3.1xxx)		
substance. A chemical	pressure.	SWBAT calculate solution		
formation of different	Describe the	concentrations in molarity (M) percent mass and		
substances with changed	behavior of solids	parts per million (ppm)		
properties	that change directly	(3.1xxix)		
4.1b Chemical and physical changes can be exothermic or	to the vapor state and recondense to solids without	SWBAT distinguish between heat energy and temperature in terms of		
endothermic.	passing through the liquid state.	molecular motion and amount of matter (4.2i)		
	-	SWBAT qualitatively		

 3.1jj The structure and arrangement of particles and their interactions determine the physical state of a substance at a given temperature and pressure. 5.2m Intermolecular forces created by the unequal distribution of charge result in varying degrees of attraction between molecules. 3.4d Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper energy and orientation. 3.4f The rate of a chemical reaction depends on several factors: temperature, concentration, nature of 	Classify by type, the heat changes that occur during melting, freezing , boiling, and condensing. Describe the motion of gas particles according to the kinetic theory Use electronegativity values to classify a bond as nonpolar covalent, polar covalent, or ionic. Name and describe the weak attractive forces that hold groups of molecules together Interpret gas pressure in terms of kinetic theory Describe the nature of a liquid in terms	interpret heating and cooling curves in terms of changes in kinetic and potential energy, heat of vaporization, heat of fusion, and phase changes (4.2iii) SWBAT distinguish between heat energy and temperature in terms of molecular motion and amount of matter (4.2i) SWBAT explain phase changes in terms of the changes in energy and intermolecular distance		
concentration, nature of reactants, surface area, and the presence of a catalyst. 3.4h Some chemical	of a liquid in terms of the attractive forces between the particles.			

and physical changes can reach equilibrium.	Distinguish between homogeneous and heterogeneous samples of matter.		
 3.1s Mixtures are composed of two or more different substances that can be separated by physical means. When different substances are mixed together, a homogeneous or heterogeneous mixture is formed. 3.1t The proportions of components in a mixture can be varied. Each component in a mixture retains its original properties. 3.1nn Differences in properties such as density, particle size, molecular polarity, boiling point and freezing point, and solubility permit physical separation of the components of the mixture. 	samples of matter. Explain on a particle basis why a solution has an elevated boiling point and a depressed freezing point compared with the pure solvent. Understand solubility of solutions Identify the factors that determine the rate at which a solute dissolves. Determine concentrations of solutions Solve problems involving the molarity of a solution.		
3.100 A solution is a homogeneous mixture of a solute dissolved in a solvent. The solubility of a solute in a given	Describe how to prepare dilute solutions from more		

amount of solvent is	concentrated		
dependent on the	solutions of known		
temperature, the	molarity.		
pressure, and the			
chemical natures of the	The flow of energy-		
solute and solvent.	Heat and work		
3.1pp The concentration	Explain the		
or a solution may be	relationship between		
(M), percent by volume,	energy and heat.		
percent by mass, or	Heat in changes of		
parts per million (ppm).	stata Construct		
4 1 - European	state Construct		
4.1a Energy can exist in	equations that show		
chemical electrical	the heat changes for		
electromagnetic	chemical and		
thermal mechanical	physical processes.		
and nuclear.			
4.2a Heat is a transfer of			
energy (usually thermal			
energy) from a body of			
higher temperature to a			
body of lower			
temperature. Thermal			
energy is associated			
with the random motion			
of atoms and molecules.			
1 2h Tomporatura is a			
4.20 Temperature is a measure of the average			
kinetic energy of the			
particles in a sample of			
matter. Temperature is			
not a form of energy.			

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.4i At equilibrium the rate of the forward reaction equals the rate of the reverse reaction. The measurable quantities of reactants and products remain constant at equilibrium. 3.4j LeChatelier's principle can be used to predict the effect of stress (change in pressure, volume, concentration, and temperature) on a system at equilibrium. 4.1c Energy released or absorbed by a chemical reaction can be represented by a potential energy diagram. 4.1d Energy released or absorbed by a chemical 	 KINETICS EQUILIBRIUM Explain what is meant by the rate of a chemical reaction. Using collision theory, explain how the rate of a chemical reaction is influenced by the reaction conditions. Predict changes in the equilibrium position due to changes in concentration, temperature, and pressure. Given an energy diagram for a reaction, analyze the mechanism for the reaction Construct equations that show the heat 	SWBAT describe the concentration of particles and rates of opposing reactions in an equilibrium system (3.4iv) SWBAT qualitatively describe the effect of stress on equilibrium, using LeChatelier's principle (3.4v) SWBAT read and interpret potential energy diagrams: PE of reactants and products, activation energy (with or without a catalyst), heat of reaction SWBAT compare the entropy of phases of matter (3.1xxiii)	Same as above	Labs: • Alka seltzer Lab • Straw Lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	First half of March

reaction (heat of reaction) is equal to the difference between the potential energy of the products and the potential energy of the reactants.	changes for chemical and physical processes. Calculate heat changes in chemical and physical processes.		
 3.4g A catalyst provides an alternate reaction pathway which has a lower activation energy than an uncatalyzed reaction. 3.111 Entropy is a measure of the randomness or disorder of a system. A system with greater disorder has greater entropy. 3.1mm Systems in nature tend to undergo changes toward lower energy and higher entropy 	Define entropy and free energy, and characterize reactions as spontaneous or nonspontaneous. Classify by type, the heat changes that occur during melting, freezing , boiling, and condensing. Calculate heat changes that occur during melting, freezing, boiling, and condensing. Define entropy and free energy, and characterize reactions as spontaneous or nonspontaneous.		

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.1uu Behavior of many acids and bases can be explained by the Arrhenius theory. Arrhenius acids and bases are electrolytes 3.1rr An electrolyte is a substance which, when dissolved in water, forms a solution capable of conducting an electric current. The ability of a solution to conduct an electric current depends on the concentration of ions. 3.1vv Arrhenius acids yield H+ (aq), hydrogen ion as the only positive ion in aqueous solution. The hydrogen ion may also be written as H3O+(aq), hydronium ion. 	ACIDS, BASES, AND SALTS List the properties of acids and bases. Name an acid or base when given the formula. Given the hydrogen-ion or hydroxide-ion concentration, classify a solution as neutral, acidic, or basic. Convert hydrogen-ion concentrations into values of pH and hydroxide-ion concentrations into	SWBAT given properties, identify substances as Arrhenius acids or Arrhenius bases (3.1xxxi) SWBAT write simple neutralization reactions when given the reactants (3.1xxxiv) SWBAT calculate the concentration or volume of a solution, using titration data (3.1xxxv) SWBAT interpret changes in acid-base indicator color (3.1xxxiii) SWBAT identify solutions as acid, base, or neutral based upon the pH (3.1xxxii)	Same as above	 Labs: Titration of Vinegar Cabbage Juice Indicator Lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	Second half of March

3.1ww Arrhenius bases yield OH- (aq), hydroxide ion as the	values of pOH		
only negative ion in an aqueous solution.	contrast acids and bases as defined by		
3.1xx In the process of neutralization, an	the theories of Arrhenius,		
Arrhenius acid and an Arrhenius base react to form salt and water.	Bronsted-Lowry, and Lewis.		
3.1zz Titration is a	Explain low		
which a volume of	used to calculate the		
solution of known concentration is used to determine the	concentration of an acid or a base.		
concentration of another solution.	Compare and contrast acids and		
3.1zz Titration is a laboratory process in	bases as defined by		
which a volume of solution of known	Arrhenius,		
concentration is used to determine the	Bronsted-Lowry, and Lewis.		
concentration of another solution	Compare and		
2 I.m. There are	contrast acids and		
alternate acid-base	bases as defined by the theories of		
theory states that an acid	Arrhenius,		
is an H+ donor and a base is an H+ acceptor.	Bronsted-Lowry, and Lewis.		
3.1ss The acidity and alkalinity of an aqueous solution can be	Explain how acid-base titration is		

 measured by its pH value. The relative level of acidity or alkalinity of a solution can be shown by using indicators 3.1tt On the pH scale, each decrease of one unit of pH represents a tenfold increase in hydronium ion concentration. 	used to calculate the concentration of an acid or a base. Compare and contrast acids and bases as defined by the theories of Arrhenius, Bronsted-Lowry, and Lewis.				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.2d An oxidation-reduction (redox) reaction involves transfer of electrons (e-). 3.2e Reduction is the gain of electrons. 3.2f A half-reaction can be written to represent reduction. 3.2g Oxidation is the 	OXIDATION- REDUCTION Define oxidation and reduction in terms of the loss or gain of oxygen or hydrogen and the loss or gain of electrons State the characteristics of a redox reaction, and	SWBAT determine a missing reactant or product in a balanced equation (3.2iii) SWBAT write and balance half-reactions for oxidation and reduction of free elements and their monatomic ions (3.2vi) SWBAT compare and contrast voltaic and electrolytic cells (3.2ix) SWBAT identify and label the parts of a voltaic cell (cathode, anode, salt	Same as above	Labs: • Raku Lab • Activity Series Lab • Electrochemical Cells Lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	April

 loss of electrons. 3.2h A half-reaction can be written to represent oxidation. 3.3b In a redox reaction the number of electrons lost is equal to the number of electrons gained. 3.2i Oxidation numbers (states) can be assigned to atoms and ions. Changes in oxidation numbers indicate that oxidation and reduction have occurred. 3.2j An electrochemical cell can be either voltaic or electrolytic. In an electrochemical cell, oxidation occurs at the anode and reduction at the cathode. 3.2k A voltaic cell spontaneously converts chemical energy to electrical energy 3.21 An electrolytic cell requires electrical energy to produce 	 identify the oxidizing agent and reducing agent. Determine the oxidation number of an atom of any element in a pure substance. Define oxidation and reduction in terms of a change in oxidation number, and identify atoms being oxidized or reduced in redox reactions. Use the oxidation-number change method to balance redox equations. Break a redox equation into oxidation and reduction half-reactions, and the method to half-reactions, and the method to half-reactions, and the method to half-reactions. 	bridge) and direction of electron flow, given the reaction equation (3.2vii) SWBAT use an activity series to determine whether a redox reaction is spontaneous (3.2x) SWBAT identify and label the parts of an electrolytic cell (anode, cathode) and direction of electron flow, given the reaction equation (3.2viii)		
3.21 An electrolytic cell requires electrical energy to produce chemical change. This process is known as electrolysis	oxidation and reduction half-reactions, and then use the half-reaction method to balance			

the equation.		
Define oxidation and reduction in terms of the loss or gain of oxygen or hydrogen and the loss or gain of electrons		
Describe how redox reactions interconvert electrical energy and chemical energy.		
Explain the structure of a dry cell and identify the substances that are oxidized and reduced.		
Distinguish between electrolytic and voltaic cells, and list some possible uses of electrolytic cells.		
Distinguish between electrolytic and voltaic cells, and list some possible uses		

	of electrolytic cells. Distinguish between electrolytic and voltaic cells, and list some possible uses of electrolytic cells. Distinguish between electrolytic and voltaic cells, and list some possible uses of electrolytic cells. Distinguish between electrolytic and voltaic cells, and list some possible uses of electrolytic cells.				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
NYS 3.1ff Organic compounds contain carbon atoms which bond to one another in chains, rings, and networks to form a variety of structures. Organic compounds can	Organic Describe the bonding in hydrocarbons. Distinguish between straight-chain and	SWBAT demonstrate understanding that: - hydrocarbons are compounds that contain only carbon and hydrogen. Saturated hydrocarbons contain only single carbon-carbon	Same as above	Labs: • Hydrocarbon Molecular Modeling Lab • Playful Polymers Lab summative assessments in the	First half of May

be named using the IUPAC system. 3.1hh. classify an organic compound based on its structural or condensed structural formula (3.1xvii) 3.1gg draw structural formulas for alkanes, alkenes, and alkynes containing a maximum of tan carbon atoms	branched-chain alkanes. Explain the difference between unsaturated and saturated hydrocarbons. Differentiate between the structures of alkenes and alkynes	 bonds. - unsaturated hydrocarbons contain at least one multiple carbon-carbon bond. - organic acids, alcohols, esters, aldehydes, ketones, ethers, halides, amines, amides, and amino acids are types of organic compounds that differ in their structures. - functional groups impart distinctive physical and 	forms of tests and quizzes based on previous regents questions formative assessments of homework checks	
 formulas for alkanes, alkenes, and alkynes containing a maximum of ten carbon atoms (3.1xxi) 3.1ii Isomers of organic compounds have the same molecular formula, but different structures and properties. 5.2e In a multiple covalent bond, more than one pair of electrons are shared between two atoms. Unsaturated organic compounds contain at least one double or triple bond 3.2c Types of organic reactions include: 	 and alkynes Distinguish among structural, geometric, and stereoisomers. Identify the asymmetric carbon or carbons in stereoisomers Describe the bonding in hydrocarbons. Explain the difference between unsaturated and saturated hydrocarbons. 	 their structures. functional groups impart distinctive physical and chemical properties to organic compounds SWBAT identify types of organic reactions (3.2iv) SWBAT determine a missing reactant or product in a balanced equation (3.2iii) 		
addition, substitution, polymerization,	Define a functional			

estification, femenation, and combustion.group and give several examples.Describe halocarbons and the substitution reactions they undergo.Describe halocarbons and the substitution reactions they undergo.Commo Core 1. Write informative/explanato y texts, including the marration of historical everts, scientific procedures/expensatori and etters.Describe the sincluding the and etters.a. Introduce a topic and uiffed whole, including teast, on the uiffed whole, including teast, stables, a data streeoisomers.Define an addition reaction and give several examples.a. Introduce a topic and uiffed whole, including tractural, geometric, and streeoisomers.Distinguish among structural, geometric, and streeoisomers.a. Introduce a topic and uiffed whole, including reaction and give ceach new elementa uiffed whole, including tractural, geometric, and streeoisomers.Distinguish among structural, geometric, and streeoisomers.b. Develop the topic beomethy bropicIdentify the symmetric carbon or carbons in streeoisomers.Identify the symmetric carbon or carbons in streeoisomers.b. Develop the topicIdentify the symmetric carbon or carbons in streeoisomers.Identify common symmetric carbon or carbons in streeoisomers.b. Develop the topicIdentify common syle circing structure.Identify common syle circing structure.				
Common Core Describe the structures and naming of alcohols and ethers. Structures and 	esterification, fermentation, saponification, and combustion.	group and give several examples. Describe halocarbons and the substitution reactions they undergo.		
s, between the processes.Compare the properties of alcohols and ethers.a. Introduce a topic and organize complex ideas, concepts, and informations ot hat each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.Distinguish among structural, geometric, and stereoisomers.b. Develop the topic thoroughly by celectingIdentify common cyclic ring structuresIdentify common cyclic ring structures	Common Core 2. Write informative/explanator y texts, including the narration of historical events, scientific procedures/experiment s or technical	Describe the structures and naming of alcohols and ethers. Define an addition reaction and give several examples		
unified whole; include formatting (e.g., headings), graphicsIdentify the asymmetric carbon or carbons in stereoisomers(e.g., figures, tables), and multimedia when useful to aiding comprehension.or carbons in stereoisomersIdentify common cyclic ring structuresIdentify common cyclic ring structures	a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a	Compare the properties of alcohols and ethers. Distinguish among structural, geometric, and stereoisomers.		
Explain resonance in	 unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. b. Develop the topic thoroughly by selecting 	Identify the asymmetric carbon or carbons in stereoisomers Identify common cyclic ring structures Explain resonance in		

and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.	terms of the aromatic ring of benzene. Explain the difference between unsaturated and saturated hydrocarbons.		
 c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts. d. Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers. 	Describe the reactions of compounds that contain the carbonyl functional group. Define an addition reaction and give several examples. Predict the products of combination, decomposition, single-replacement, and combustion reactions.		
e. Provide a concluding statement or section that follows from and			

supports the information or explanation provided (e.g., articulating implications or the significance of the topic).					
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/ Weeks/D ays)
 NYS 3.10 Stability of isotopes is based on the ratio of the neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay emitting radiation 4.4a Each radioactive isotope has a specific mode and rate of decay (half-life). 5.3a A change in the nucleus of an atom that converts it from one element to another is called transmutation. This can occur naturally or can be induced by the 	Nuclear Discuss the processes of radioactivity and radioactive decay. Use half-life information to determine the amount of a radioisotope remaining at a given time. Compare nuclear fission and nuclear fusion, and comment on their potential as	SWBAT calculate the initial amount, the fraction remaining, or the half-life of a radioactive isotope, given two of the three variables (4.4i) SWBAT compare and contrast fission and fusion reactions (4.4ii) SWBAT complete nuclear equations; predict missing particles from nuclear equations (4.4iii) SWBAT identify specific uses of some common radioisotopes, such as: I-131 in diagnosing and treating thyroid disorders; C-14 to C-12 ratio in dating living organisms; U-238 to Pb-206 ratio in	Same as above	Labs: • Half Life Lab summative assessments in the forms of tests and quizzes based on previous regents questions formative assessments of homework checks	Second half of May

Bombardment of the nucleus by high-energy particles.	sources of energy. Characterize alpha,	dating geological formations; Co-60 in treating cancer (4.4iv)		
3.1p Spontaneous decay can involve the release of alpha particles, beta particles, positrons, and/or gamma radiation	beta, and gamma radiation in terms of composition and penetrating power.			
from the nucleus of an unstable isotope. These emissions differ in mass, charge, ionizing power, and penetrating power.	Describe the methods used in nuclear power plants to produce and			
4.4b Nuclear reactions include natural and artificial transmutation, fission, and fusion.	control fission reactions. Describe the methods used in			
4.4f There are benefits and risks associated with fission and fusion reactions.	nuclear power plants to produce and control fission reactions.			
4.4c Nuclear reactions can be represented by equations that include symbols which represent atomic nuclei (with the mass number and atomic number), subatomic particles (with mass number and	Give examples of equations for the synthesis of transuranium elements by transmutation.			
charge), and/or emissions such as gamma radiation.	Use half-life information to determine the			
5.3b Energy released in a nuclear reaction	amount of a radioisotope			

(fission or fusion) comes from the fractional amount of mass converted into energy. Nuclear changes convert matter into energy.	remaining at a given time. Describe three methods of detecting radiation.		
5.3c Energy released during nuclear reactions is much greater than the energy released during chemical reaction.	List some applications of radioisotopes in research and medicine		
4.4e There are inherent risks associated with radioactivity and the use of radioactive isotopes. Risks can include biological exposure, long-term storage and disposal, and nuclear accidents			
4.4d Radioactive isotopes have many beneficial uses. Radioactive isotopes are used in medicine and industrial chemistry, e.g., radioactive dating, tracing chemical and biological processes, industrial measurement, nuclear power, and detection and treatment of diseases.			

COMMON CORE Standards for Science: LITERACY (Addendum to Curriculum Maps) READING

Key Idea 1: Read and cite specific evidence from scientific sources to support scientific laws and hypotheses. Make logical inferences and conclusions based on evidence provided. Inquire about any inconsistencies.

Science Lessons to Utilize: All Units & Topics

Key Idea 3: Follow precisely a multistep procedure when carrying out experiment, taking measurements, performing technical

tasks. Analyze the results and compare to information provided in background reading provided prior to the activity.

Science Lessons to Utilize: All Laboratory Activities

Key Idea 4: Determine the meaning of symbols, key terms, and other scientific words and phrases as they are used in specific scientific or technical context.

Science Lessons to Utilize: All Units & Topics

Key Idea 7: Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively as well as written information, to answer questions and solve problems.

Science Lessons to Utilize: All Units & Topics

Key Idea 8: Evaluate the hypotheses, data, analysis, and conclusions in a laboratory activity and compare the results to current accepted scientific explanations.

Science Lessons to Utilize: All Laboratory Activities

Key Idea 9: Synthesize information from a range of sources, especially experiments, into an understanding of a process or concept, and provide a coherent conclusion

Science Lessons to Utilize: All Units & Topics

COMMON CORE Standards for Science: LITERACY (Addendum to Curriculum Maps) WRITING

Key Idea 1: Write arguments focused on scientific content

a: Introduce scientific topics, establish significance of the topic, organize logical evidence to support current scientific understandings

c: Use scientific terms and proper syntax to support and clarify evidence to support current scientific understandings

e: Provide a concluding statement that supports the understandings presented Science Lessons to Utilize: All Units & Topics Key Idea 2: Write informative lab reports including scientific procedures & technical processes used during experiments

a: Introduce a topic and organize complex ideas, concepts and information so that each new element builds on that which precedes it to create a unified whole, include information from any relevant sources

e: Provide a concluding statement that follows from and supports the information or explanation presented Science Lessons to Utilize: All Laboratory Activities

Key Idea 6: Use technology to produce, publish, update writing products as new information is introduced about current scientific understandings, especially findings from new research

Science Lessons to Utilize: All Units & Topics

Key Idea 7: Conduct short as well as more sustained research projects to answer a question or solve a problem, synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation

Science Lessons to Utilize: All Units & Topics

Key Idea 8: Gather relevant information from multiple sources, using effective search techniques, to investigate information provided about current scientific understandings

Science Lessons to Utilize: All Units & Topics

Key Idea 9: Draw evidence from various sources to support, analyze, research or contradict current scientific understandings

Science Lessons to Utilize: All Units & Topics

Key Idea 10: Write routinely over extended time frames a scientific journal about understandings presented in class

Science Lessons to Utilize: All Units & Topics